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ABSTRACT 
Local railway defects such as joints generate large forces when excited by a passing train.  This is 
particularly a problem in urban environments where trams traverse lines densely populated with defects.  
This paper proposes a hybrid experimental-numerical approach to predict the ground-borne vibrations 
caused by these singularities.  Firstly, a multibody train-track numerical model is used to generate the 
force densities caused when a tram passes over a variety of defects.  These densities are then coupled with 
experimental transfer functions, thus allowing for the effect of singular defects to be included in vibration 
studies.  Using the proposed methodology, analysis is performed into the effect of different types of 
defect on vibration levels at several physical sites on a European tram network. 
 
INTRODUCTION 

Ground-borne vibration from railways is a nuisance in urban areas.  There are two primary approaches to 
evaluate vibration: numerical modelling [1], [2], [3] and physical testing [4], [5]. Numerical modelling is 
suitable for performing parametric studies and for simulating situations where input parameters are well 
defined. However, for the case of urban railways, the uncertainties caused by complex topography and 
infrastructure arrangements (e.g. buried services) mean that it is often best suited for scoping purposes 
only.  In practise, physical testing is more commonly used and allows for the determination of transfer 
functions between a source (i.e. potential railway) and a receiver (i.e. existing building) [4], [5].  Physical 
testing procedures are typically concerned with determining a line-source transfer mobility, which 
accounts for the contribution of a long length of train traversing a (relatively) smooth track. However, in 
urban environments, tracks are densely populated with localised rail discontinuities (e.g. rail joints, 
switches and turnouts), which generate vibration levels much larger than a horizontally continuous track. 

Many ground-borne vibration complaints in urban environments are due to local rail and wheel 
surface defects (e.g. switches, rail joints, etc). Therefore the first step in analysing this problem is to 
understand wheel/rail interaction at the defect location. In an attempt to do this, Zhao et al. [3] evaluated 
the wheel/rail impact forces at the location of local rail surface defect zones using a three-dimensional 
finite element model. They also evaluated the resulting dynamic forces at the discrete supports of the rail 
under different train speeds. Alternatively, Grossoni et al.[6] performed a parametric study to understand 
the dynamic behaviour of a rail joint and the influence of track and vehicle parameters on track dynamics. 
Mandal et al. [7] also studied the impact forces on wheels at dipped rail joints, showing that they were of 
very short duration, of high magnitude and with high-frequency content.  

Kouroussis et al. [8] showed that models based only on vertical wheel/rail forces fail to predict 
horizontal ground-borne vibrations generated by local rail joints. Kouroussis [9] further developed a 



multibody vehicle/track model to account for track discontinuities. This model was capable of calculating 
the impact forces generated at a variety of rail joints or other localised defects with different dimensions.  
 
The objective of this paper is to couple a newly developed discontinuity vibration prediction model with 
in-situ physical testing procedures. The final approach will be suitable for calculating the vibration 
response of any rail defect, for any case of new railway line. First the physical testing procedure required 
to couple with the numerical model is described. Then the numerical model is presented, followed by a 
strategy to couple both physical and numerical models. Finally a case study is performed in on a tram line 
and the effect of train speed and defect characteristics is investigated. The aim of the tool is to provide a 
method that improves the accuracy of railway vibration assessment while minimising costs. 
 
HYBRID MODELLING APPROACH  
Overview 
For ground vibration assessment on existing lines, in situ monitoring is often used.  For new lines 
however, physical testing is usually preferred to determine the transfer characteristics of the soil because 
it can capture the highly heterogeneous nature of the soil.  These physical test results are coupled with the 
track response via either historical measurements or numerical simulations.  A challenge with the case of 
rail discontinuities is that, due to their highly variable nature, historical measurements are rarely available 
and numerical simulations can be complex. 
 
Physical modelling (vibration propagation) 
 

  

Figure 1 - The effect of vehicle passing over a railtrack. Left: (a) for distributed source, Right: (b) for 
local source of excitation. The bold arrows represent the main contribution of the vehicle passing. This 

corresponds to the expected excitation to be produced by equivalent excitations 
 

Ground vibration near railway lines is caused by dynamic train loads, which depend on the nature of the 
interaction between the railway vehicle and the track. As discussed by Kouroussis et al. [10] ground-
borne vibrations generated by railroads can be categorised depending upon the excitation mechanism:  
• If the track is characterised by a very high quality rolling surface, the effect generated by the moving 
of axle loads can be considered as static or quasi-static, thus effecting static track displacement. The term 
“quasi-static” is generally used where the vehicle’s speed is significantly lower than the critical track [11] 
and soil speeds [12].  

• If surface imperfections play a role on wheel/rail forces, then a dynamic excitation is added to the 
static contribution. In the case of low speeds (up to 80 km/h, as in an urban area), the dynamic excitation 
has a dominant influence on ground vibration levels. 

In the case of a perfect track surface or where there are few irregularities along the track alignment, quasi-
static effects dominate ground vibration. Due to the track invariance along the direction x, it is assumed 
that the effect of a moving wheelset j on a track/soil system can be represented by: 

௘݂௫௖,௝ ൌ ෍ ௞݂ߜሺݔ െ ሻܮ݇

ஶ
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where fk is the force acting through the kth sleeper interface at each distance L (sleeper spacing). The 

resulting vibrations at different distances from the track result from the summation of the effects of each 
force fk in the near-field (Figure 1) and are often called line source vibration. In practice, the forces acting 

on sleepers far from the receptor have a negligible influence on the resulting vibration level, so the above 
equation becomes: 

௘݂௫௖,௝ ൌ ෍ ௞݂ߜሺݔ െ ሻܮ݇

௠

௞ୀଵ

 

In the case of a local defect, the ground vibration near railway lines is the result of the interaction of 
the railway vehicle and the track irregularity (Figure 1). In addition, if the vehicle speed is low (e.g. light 
transit vehicles, like trams or metros) typically this type of line will also have  a relatively high density of 
singular rail surface defects.  In this case, dynamic track deflection dominates ground wave 
generation meaning it is reasonable to consider a single force acting on the wheel/rail defect contact point 
as the only contributor to railway vibration. Therefore,  

௘݂௫௖,௝ ൌ ௪݂௛௘௘௟/௥௔௜௟ 
represents the force acting at the wheel/rail interface when a wheelset j is in contact with the local defect.  

A physical testing procedure, such as the technique developed by Nelson and Saurenman [5], is often 
used for predicting ground borne noise and vibration caused by railway vehicles. The main focus of this 
tool is the estimation of ground-borne noise and vibration between 6.3 and 200 Hz in residential areas 
near at-grade and subway track. It does so by calculating the line transfer mobility, defined as a function 
of the frequency f,  

௅,௜ܯ ൌ 10 logଵ଴ ቌ݀෍10ெ೔ೕ/ଵ଴

௟

௝ୀଵ

ቍ 

It is obtained via the superposition of l point transfer mobilities Mij between several points j (j:1↦l) of the 

rail, spaced of distance d, and the studied receptor response xi, and the force density LF obtained from 

tests [4] (or numerical calculations [13]). The resulting vibration is calculated at distance yi from the track 

to predict the vibration velocity level  
௏,௜ܮ ൌ ிܮ ൅  ௅,௜ܯ

The basis of this method is the measurement of a single source transfer mobility function between 
various points i on a system. This function gives the dynamic transfer characteristics (in the frequency 
domain [14]) between two points of the system — the soil velocity response Xi(f) and the force Fj(f) 

acting at the soil surface. A single source transfer mobility is theoretically defined by  

௜௝ሺ݂ሻܯ ൌ 10 logଵ଴ ቆ
௜ܺሺ݂ሻ
௝ሺ݂ሻܨ

ቇ 

When considering low speed vehicles and in the presence of local defects, one point transfer mobility (or 
a small number of point transfer mobilities) is sufficient to evaluate ground wave propagation, (i.e. by 
combining the latter two equations). This situation is very common in urban environments and thus the 
present study focuses solely on this problem. 
 
Numerical modelling (vibration generation) 
Vehicle/track/foundation modelling 
The structure of the vehicle/track/foundation model is summarised in Figure 2. It is derived from the 
model of Zhai and Sun [15] and consists of a classical multibody vehicle model, coupled to a finite 
element/lumped mass track model. The latter lies on a foundation represented by a coupled lumped mass 
(CLM) model. The foundation is thus defined by its mass, damping, and stiffness matrices, constructed 
from its mechanical and geometrical properties. This offers a way to accurately predict the track response 



at low frequencies were the foundation plays an important role, by creating a more realistic coupling [16], 
[17]. 
 

  

Figure 2 - Vehicle/track/foundation simulation [18] 
 
The track and vehicle subsystems are coupled via the wheel/rail contact forces, explicitly considered as 
non-linear, and depending on the position of wheel and its contact with the rail: 

௪௛௘௘௟/௥௔௜௟,௜ܨ ൌ ௪௛௘௘௟,௜ݖு௭൫ܭ െ ௝൯ݔ௥௔௜௟൫ݖ െ ݄ௗ௘௙௘௖௧൯
ଵ.ହ

 
This connection force is more realistic than a simple linear spring since it is derived from Hertz’s theory, 
depending on the vertical position ݖ௪௛௘௘௟,௜ of the wheel and the corresponding vertical displacement 

 ு௭ is the Hertz’s coefficient (in Nm2/3 — different from theܭ .௝ݔ ,௝ሻ at the rail at coordinateݔ௥௔௜௟ሺݖ
Hertz’s stiffness). The vertical dynamic response of the vehicle/track subsystem due to the rail irregularity 
݄ௗ௘௙௘௖௧ is therefore calculated using the geometry of the studied local defect (represented by an analytical 
function). 
 
Modelling local defects and singularities 

  

Figure 3 - Mathematical modelling of local rail and wheel surface defects: (a) ramp, (b) step-up joint, (c) 
step-down joint, (d) pulse joint and (e) negative pulse joint  [9] 

 
Figure 3 presents the singular rail and wheel surface defects studied in this paper. Each defect is 
characterized by its length l and its height h and is defined using a specific shape seen by the wheel 
running at a speed v0 (assumed to be constant). Each of these defect types can be modelled as a single 



dynamic excitation at the wheel/rail defect contact point.  Although a small number of alternative defects 
exist, such as wheel flats (which induce a series of periodic impacts), these are outside the scope of this 
work. 
 
Coupling of experimental and numerical approaches 
 

The wheel/rail contact forces ܨ௪௛௘௘௟/௥௔௜௟,௜ acting at the defect location are saved during the simulation and 
are then combined with the measured transfer mobility functions.  This allows for the calculation of 
ground vibration at the desired locations. Logically, according to the basic principles explained in Section 
2, the dynamic part of wheel/rail force acting on the specific rail location (on the defect) is required, and 
the quasi-static component can be neglected. Practically, it is assumed that a small part of rail location 
around the defect considered, in order to take into account the whole force shape. With the source 
mobility function Mij defined previously, the simulated force density LF, obtained using the discrete 

Fourier transform of Fwheel/rail is: 

ிܮ ൌ 10 logଵ଴ ቀܶܨܦ൫ܨ௪௛௘௘௟/௥௔௜௟൯ቁ 

which provides the information necessary to calculate the vibration velocity level ܮ௏,௜  defined by  
௏,௜ܮ ൌ ிܮ ൅  ௜,௝ܯ

An inverse Fourier transform then allows for time history representation. 
 
CASE STUDY 

Collection Of Experimental Data 
Experimental data was collected from a combination of ballasted and slab tracks, designated site 1 to site 
14, across Brussels.  Accelerometers were placed along a profile perpendicular to the track, allowing the 
measurement of the vertical soil response xi(t). The first accelerometer was placed close to the track (tram 

site edge) and the others at distant points of interest (e.g. sensitive building, foundation walls of dwelling, 
…), while maintaining a similar distance from the track/foundation where possible. A falling mass was 
used to excite the track at the rail head, at the localized singular defect. It consisted of multiple masses of 
12.5 kg, and an elastomer support allowing for the physical filtering of the desired frequency range (up to 
100–150 Hz). The maximum mass was 52 kg and could be dropped from a maximum height of 1.5 m. 

  

Figure 4 - Transfer mobility functions Mij for site 6 (ballasted track). Left: (a) magnitude, Right: (b) 

coherence 
 

Figure 4 presents an example of calculated transfer mobility functions (here for site 6, ballasted track).  
Coherence curves (Figure 4) are also plotted in order to define the frequency range free from 
measurement errors and it shows a relatively good accuracy for the results in the frequency range between 
10 and 90 Hz.  A maximum amplitude is found for frequencies in the range 21–23 Hz depending on the 
track/soil configuration. Dynamic excitation generated within the track is both filtered and dampened by 
the soil as it propagates. This shows an attenuation with the distance over the entire frequency range - 



between track and building foundation, a difference of approximately 10–15 dB is observable. Similar 
trends were also found for the alternative sites. 
 

Computation Of Numerical Data 
 

The T2006 tram was used as a reference for the various aforementioned sites and local defects. 
Developed by Bombardier Transport, this multicar tramway is composed of three car bodies and 
characterized by a low floor design, meaning the motors are mounted directly inside the wheels and the 
bogies have independent rotating wheels. The multibody model thus limits the vehicle dynamics to pitch 
and bounce motions. The proposed model includes resilient wheels characterized by a soft rubber layer, 
reducing the impact of high unsprung masses on the rail. Kouroussis et al. [19] analysed in-depth the 
vehicle dynamics coupled to the track and showed that, when the tram passes over localized defects, it 
generates high level vibrations characterised by several vehicle modes. All the simulations were 
computed considering a small portion of the track (N = 40 and Nn = 2, for a track of 14 m length — this 

consisted of a 124 degrees-of-freedom track model, plus a 16 degrees-of-freedom vehicle model). The 
dynamic characteristics of the track were similar to those of [19].   
 
Figure 5 presents some examples of calculated wheel/rail forces obtained using the 
vehicle/track/foundation model. The passing of the tram at a constant speed of v0 = 30 km/h on a ramp 

and a pulse defect is shown as an illustrative example. The impact of each wheel is clearly visible: each 
axle crosses the defect at times t = 0.98 s, t = 1.19 s, t = 1.89 s, t = 2.09 s, t = 2.79 s and t = 2.99 s, with 
strong oscillations after each impact. This corresponds to a signal frequency of approximately 16 Hz and 
is associated with the vehicle’s bogie bounce mode. Despite having a similar height, both defects do not 
generate the same force amplitude, the latter being more important for the pulse defect, which is shorter 
and more discontinuous than the ramp defect. The same simulations were computed for the other defects 
and found to be consistent with the findings in [8]. 
 

  

Figure 5 - Left: Calculated wheel/rail forces acting on defect location for a T2006 tram running at 
30 km/h on a ramp defect (h = 1 m; l = 0.05 m). Right: Calculated wheel/rail forces acting on defect 

location for a T2006 tram running at 30 km/h on a pulse joint defect (h = 1 mm; l = 5 mm). 
 
 

RESULTS 
 

Figure 6 shows the ground vibration results for all defects with similar heights (1 mm) and lengths (5 mm, 
except for the ramp defect where l = 0.05 m is considered), for site 1. It is seen that that the vibration 
duration is similar however each wheel passing on a specific defect generates different vibration 
characteristics (both in geometry and magnitude). When computing the time histories, attention was paid 
to the causality of the response, due to the use of the inverse discrete Fourier transform, and the results 
were verified in all cases. As expected, the ramp defect generated lower vibration levels than the other 



cases, except for the negative pulse joint. This was due to its short length, resulting in a lower height than 
the other cases. When the wheel is in contact with the first rail edge, it moves down until it is in contact 
with the second edge, thus meaning that for a length l = 0.005 mm, the apparent height is only 0.01 mm 
(compared to h = 1 mm for the other defect cases). 

  

  

Figure 6 - Time histories of vibration velocity predicted at 13 m from the track (site 1) for a tram T2006 
running at 30 km/h as a function of the defect type: (a) ramp (h = 1 mm; l = 0.05 m), (b) step-up joint (h = 
1 mm), (c) step-down joint (h = 1 mm), (d) pulse joint (h = 1 mm; l = 5 mm) and (e) negative pulse joint (l 

= 5 mm). 

Figure 7 shows the vibration levels for a theoretical pulse joint at each experimental site for a receiver 
located between 6.9 m and 13 m. A direct comparison of attenuation was not possible because the sensors 
were placed at different distances, however a few trends are noticeable. Firstly, the track installation has a 
strong influence of the vibratory impact on neighbour buildings. Comparing the results between track 
types, in general it is seen that slab tracks (sites 7 to 14) present improved vibration isolation than classic 
ballasted tracks (sites 1 to 6). Other findings observed from all the site results revealed that:  

 The mean vibration level at the foundation location varies with measurement site. The maximum 
level does not exceed 5 mm/s, which usually represents a threshold for such buildings. Sites 9, 7, 3 
and 2 present, in that order, higher PPV. Site 1 (with the increased track-foundation distance) does 
not present elevated vibration levels. 

 No notable difference between ballasted track vibration levels, including concrete (sites 1 and 2) 
or wood sleepers (sites 3 to 6), was found.  

 The only site with floating slab, site 9, generated the highest level of vibrations, however, only 
two measurement locations were considered. 

• Regarding slab track sites 10-14 (same track-foundation distance of 7.9 m), the vibration level was 
relatively similar, except for site 10.  

 

Figure 7 - Predicted PPV as a function of all the studied sites for a T2006 tram running at 30 km/h on a 
pulse joint defect (h = 1 mm; l = 5 mm). 

 
 
Effect Of Tram Speed  



Table 1 shows the effect of varying tram speed (in the range 20–80 km/h) on PPV for all 14 sites in 
the presence of a step-up joint. Similar trends to previously are observed regarding the different sites. For 
each site, PPV decreases when the tram changes speed from 50 to 60 km/h (except site 5 where this 
phenomenon occurs from 60 to 70 km/h). This local change is important according to the site, however, it 
is difficult to explain the cause of these specific differences. One drawback of using field mobility 
functions is that the subsurface data and configuration is never known. 

 
Table 1 - Predicted PPV as a function of speed for a T2006 tram running on a step-up joint (h = 1 mm) 

and for all the studied sites. 

Defect size was also investigated, with Figure 8 showing the results of an analysis for a T2006 tram 
running at 50 km/h on a step-up joint and a step-down joint. Both vibration PPV and VdB values 

(according to [4]) are compared, in order to have an overall view of the vibration peak (PPV) and of the 
vibration energy (VdB). In a general way, the vibration levels increase with defect size. A positive 

relationship between defect size and vibration level is found (except for the PPV vs. step-down joint 
where the values exhibit localised peaks, however without a strong positive trend)). It is also interesting 
to note that the step-up joint and the step-down joint yield very different vibration levels (both PPV and 
VdB values) even though the defect shapes are identical but opposite in shape. The non-linear effects at 

the wheel/rail contact are evident since the two defects (same wheel/rail contact definition) induce 
different ground vibration levels. This effect was discussed in [8], demonstrating that the vehicle 
dynamics have a strong influence on the vibration levels for such cases.  

 

 

Figure 8 - Predicted vibration levels as a function of the defect size for site 7 for a T2006 tram running at 
50 km/h. Left: (a) a step-up joint, (b) a step-down joint  

 
CONCLUSIONS 
Railway-induced ground vibrations can cause negative effects to people/structures located near lines. One 
of the main sources of these vibrations is from the large vehicle forces generated when the train wheels 
impact local defects (e.g. switches/crossings). These defects occur frequently in densely populated areas 
due to the complex track infrastructure arrangements associated with urban lines. Furthermore, the 
vibration propagation path and receiver configurations are also complex due to rapid changes in terrain 



and building layout. These complexities make numerical modelling challenging and therefore this paper 
presented a combined experimental-numerical prediction approach to overcome this. Firstly an 
experimental method to determine the transfer mobility between source and receiver was described. Then 
a vehicle-track numerical model was outlined, that was well suited to simulating the forces generated 
when vehicle wheels impact a rail discontinuity. The two modelling approaches were combined to enable 
the prediction of ground-borne vibration propagation from a variety of defects into nearby buildings. The 
procedure is capable of modelling any type of vehicle, speed and defect. Finally, a case study was used to 
show the capability of the modelling approach. To do so, an experimental campaign was undertaken on a 
tram line in Belgium and the results coupled with numerical simulations of a T2006 tram. The effect of 
tram speed was then investigated. 
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